Problem 5196. Determine the last six digits of the product (2010) (5^{2014})

Proposed by Neculai Stanciu, Buzău, Romania

Solution by Ercole Suppa, Teramo, Italy

Clearly the last digit of $N = (2010) (5^{2014})$ is 0. Therefore in order to find the last six digits of N it is enough to calculate the last five digits of $(201) (5^{2014})$.

Let us first calculate a few power of 5, and to do it we need to know just the last five digits of the previous power of 5:

Observe that the last five digit of 5^{14} are the same as those of 5^6 . Therefore, starting with 5^6 the last five digits of powers of 5 will repeat periodically:

```
15625, 78125, 90625, 53125, 65625, 28125, 40625, 0325, 15625, \dots
```

and so on. This means that increasing the exponent of eight does not change the last five digits of powers of 5. Since $2014 = 6 + 8 \cdot 251$, it follows that 5^6 and 5^{2014} have the same last five digits, so

$$201 \cdot 5^{2014} \equiv 201 \cdot 5^6 \equiv 201 \cdot 15625 \equiv 40625 \pmod{10^5}$$

and this implies that the last six digits of (2010) (5^{2014}) are 406250.