Problem 5196. Determine the last six digits of the product (2010) (5^{2014})
Proposed by Neculai Stanciu, Buzău, Romania

Solution by Ercole Suppa, Teramo, Italy

Clearly the last digit of $N=(2010)\left(5^{2014}\right)$ is 0 . Therefore in order to find the last six digits of N it is enough to calculate the last five digits of (201) $\left(5^{2014}\right)$.

Let us first calculate a few power of 5 , and to do it we need to know just the last five digits of the previous power of 5 :

$5^{1}=5$	$5^{2}=25$	$5^{3}=25$	$5^{4}=625$
$5^{5}=3125$	$5^{6}=15625$	$5^{7}=78125$	$5^{8}=\cdots 90625$
$5^{9}=\cdots 53125$	$5^{10}=\cdots 65625$	$5^{11}=\cdots 28125$	$5^{12}=\cdots 40625$
$5^{13}=\cdots 03125$	$5^{14}=\cdots 15625$		

Observe that the last five digit of 5^{14} are the same as those of 5^{6}. Therefore, starting with 5^{6} the last five digits of powers of 5 will repeat periodically:

$$
15625,78125,90625,53125,65625,28125,40625,0325,15625, \ldots
$$

and so on. This means that increasing the exponent of eight does not change the last five digits of powers of 5 . Since $2014=6+8 \cdot 251$, it follows that 5^{6} and 5^{2014} have the same last five digits, so

$$
201 \cdot 5^{2014} \equiv 201 \cdot 5^{6} \equiv 201 \cdot 15625 \equiv 40625 \quad\left(\bmod 10^{5}\right)
$$

and this implies that the last six digits of (2010) $\left(5^{2014}\right)$ are 406250.

